A 1.0Gbps CMOS Oversampling Data Recovery Circuit with Fine Delay Generation Method∗

نویسنده

  • Jun-Young PARK
چکیده

This paper describes an oversampling data recovery circuit composed of an analog delay locked loop and a digital decision logic. The novel oversampling technique is based on the delay locked loop circuit locked to multiple clock periods rather than a single clock period, which generates the timing resolution less than the gate delay of the delay chain. The digital logic for data recovery was implemented with the assumption that there is no frequency deviation that hurts the center of acquired data. The chip has been fabricated using 0.6μm CMOS technology. The chip has been tested at 1.0Gb/s NRZ input data with 125MHz clock and recovers the serial input data into eight 125Mb/s output stream. key words: oversampling data recovery, PLL, DLL, jitter

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CMOS High Speed Data Recovery Circuit

This paper presents a scheme and circuitry for demultiplexing and synchronizing high-speed serial data using the matched delay sampling technique. By simultaneously propagating data and clock signals through two diierent delay taps, the sampler achieves a very ne sampling resolution which is determined by the diierence between the data and clock delays. Thus, the sampler is capable of oversampl...

متن کامل

Optimized Standard Cell Generation for Static CMOS Technology

Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...

متن کامل

Optimized Standard Cell Generation for Static CMOS Technology

Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...

متن کامل

A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link

A 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial link without the reference clock is described. The CDR has a phase and frequency detector (PD and FD), which incorporates a half-rate bang-bang type oversampling PD and a half-rate frequency detector that can achieve low-jitter operation and improve pull-in range. The PD of oversamping method finds a phase error by generati...

متن کامل

A 0.8- m CMOS 2.5 Gb/s Oversampling Receiver and Transmitter for Serial Links

A receiver targeting OC-48 (2.488 Gb/s) serial data link has been designed and integrated in a 0.8m CMOS process. An experimental receiving front-end circuit demonstrates the viability of using multiple phased clocks to overcome the intrinsic gate-speed limitations in the demultiplexing (receiving) and multiplexing (transmitting) of serial data. To perform clock recovery, data is 3 oversampled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000